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Neural Maps in the Brain

Topology preserving mapping (learning) of sensory stimuli on the cortex (2-D surface). 

Example: In the auditory cortex tonotopic maps are formed where the 2-D spatial 
order of cell responses corresponds to the acoustic frequency of tones perceived. 
This spatial organization according to similarities facilitates precise and fast 
recognition and retreival of patterns. This is the type of learning that interests us.
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A close-up of the cat’s auditory receiving area (shaded), showing 
the tonotopic map at the cortical surface. Each large dot represents 
a single neuron. The number beside each dot is the characteristic 
frequency of that neuron in 1000 Hz. (From Abeles and Goldstein, 
1970, and Gidick, Gescheider and Frisina, 1989.)

Left figure: 
A cartoon of the spatial ordering of sensory (auditory) stimuli, according to their similarities, on the 
cortex.
Right figure:
The cat’s brain, indicating the location of the auditory receiving area (shaded), and a  close-up of the 
auditory receiving area, showing the tonotopic map at the cortical surface. Each large dot represents 
a single neuron, and the number beside each dot represents the characteristic frequency of that 
neuron in thousands of Hz. (From Abeles and Goldstein, 1970, and Gidick, Gescheider and Frisina, 
1989.)
Note the ordering of frequencies in both directions, i.e., finer details within each column of major 
frequency ranges.
This type of topology preserving mapping (learning) of sensory stimuli on a 2-D (low-D) surface is 
of our interest. Other biological analogs include the retinotopic maps in the visual cortex, or stimuli 
percieved through touching organized in the somatosensory cortex.
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Self-Organizing Neural Maps
(unsupervised learning machine)

Formation of basic (Kohonen) SOM:
x  = (x1, x2, …, xn) ∈ M ⊆ Rn input pattern
wj = (wj1, wj2, …, wjn)  j=1, … , N synaptic

weight vector (pointer)
3-step learning, through many iterations:

• neighborhood preserving, adaptive vector quantizer 
(optimal placement of prototypes)
• nonlinear mapping of the n-D input space to a low-
D lattice
• measure of dissimilarities is expressed by the 
difference of the weights of neighbor neurons

n-D data space

i(x)

Wi

x

During learning, areas of neurons form to collectively 
represent groups of similar patterns   ⇒ clustering

lattice of neurons

1. Competition
Select a pattern x randomly. Winning neuron 
i(x) = arg minj ||x - wj||, j=1, … , N

2. Cooperation: Winner activates neighbor neurons 
according to a neighborhood function  h j,i(x) (t).

3. Synaptic adaptation
wj(t+1) = wj (t)+a(t) h j,i(x) (t) (x - wj(t))
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The artificial machine learning model that intends to mimic the cortical ordering of stimuli is the 
Self-Organizing Map. 
This machine learns the structure of the input data by cycling through the above steps 1 – 3, many 
times. 
Important is the neighborhood preservation (topologically faithful mapping) … Without 
neighborhood concept in the SOM lattice, this would be ordinary vector quantization. 
Main reference: Kohonen Self-Organizing Maps, (Springer-Verlag, 1997, 1999).
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128 x 128 px image
6-D spectra

5 spectral classes
synthetic, noiseless

A C

E K

1-px class U

Weights of 10 x 10 KSOM, after learning
Toy example I
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An illustration of learning the data structure by an SOM, through a small spectral image where each 
pixel is a 6-D spectrum. There are four large classes and one tiny  - 1-pixel – class in this image. The 
mean of the class spectra are shown in the left plot. On the right, the learned SOM weight vectors are 
shown (as spectra) at their corresponding locations in the 10 x 10 SOM grid. It is clear that the 
weight in the lower right corner became the prototype of the tiny class U, the weights in the middle 
represent class A, those in the upper left, lower left corner, and the upper right corners represent  K, 
E, and C, respectively. Note the relative size of the SOM areas (the number of neurons) allocated for 
each class. The large classes get much larger areal representation than the tiny class.
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5-class mapping
Weights vectors (prototype vectors)

of 10 x 10 KSOM, after learning

cluster boundaries
in the 10 x 10 KSOM

U-matrix of the learned weights,
formed by computed & visualized 
distances of neighboring neurons’ 

weights
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By computing and visualizing the distances between weights of neighbor neurons cluster boundaries 
are outlined as shown on the left. Colors within the SOM areas separated by the white fences here 
show the class types known to us. The cluster boundaries represent what the SOM learned. Clearly, 
the agreement is perfect.  Highlighting in the input data space (the image) all data points that were 
mapped to neurons within the clusters detected by the SOM produces perfect coverage of the 
respective known class areas.
Note that the 1-pixel class is only represented by 1 weight vector (the other two that look similar on 
this scale are dissimilar enough to be “fenced off” on the left image).
Note also that this image is noiseless, syntethic, all spectra are exactly the same within each class, so 
at the end all spectra from a class map onto the same one neuron. However, the learned weights 
occupy the entire area for a class within the cluster boundaries.
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Possible representations of SOM knowledge 
for cluster detection 

(“remap” HYPEREYE module)

Density Map Fence Map (U-matrix) Combined Density & Fence Map

Input data: AVIRIS image of Lunar Crater Volcanic Field, 420 x 614 pixels  x 194 bands

Automation of cluster extraction from SOMs of this complexity is an unsolved challenge.
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For real, high-dimensional data, the SOM shows fuzzy, complicated structure. Density and fences 
together represent the full knowledge of the SOM.

Real, noisy, high-dimensional data produce fuzzy, complicated SOM knowledge structure. Capturing 
the clusters correctly and to a desired granularity is a great challenge. Automation of cluster 
extraction from a learned SOM is currently an unsolved problem for this level of complexity.

We are working on various issues related to the interpretation of maps like these. Ideally, the 
combined density and fence map provides the full knowledge of the SOM. However, many small 
details need to be addressed. For example, by overlaying the two maps the fences around the 
brightest group became almost invisible due to contrast and color relations that trick the human eye. 
We have built in various on-the-fly capabilities to change such visualization parameters 
instantaneously during a “remap”  session. This is important also because optimal  display  for the 
human eye may vary from one part of the SOM to another.
Insight gained by using these semi-manual tools helps get closer to full automation of the 
interpretation of the SOM. 
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Automation of SOM Cluster Extraction
Our study area #1 (new, 2004 summer)

Goal: Automation of cluster extraction; Ability to find rare  clusters for scientific discovery
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Our Contributions: Using both the topology and the data density in clustering
(neither was considered earlier)

Rare clusters are found!

Approach : Hierarchical tree-based clustering of SOM weights
Start point: Vesanto & Alhoniemi, IEEE TNN’2000

2-d ‘clown’ data
2220 points

(small pale blue dots)

new

(correct)

cluster

rare clusters

correct

clustering

Vesanto & Alhoniemi

Our clustering
Overlain on V & A’s
clustering

Credit: Kadim Taşdemir

Goal: Automation of cluster extraction with desired granularity; Ability to find rare  
clusters for scientific discovery

Approach : Hierarchical tree-based clustering of SOM weights
Start point: Vesanto & Alhoniemi, IEEE TNN’2000

Our Contributions: Using both the topology and the data density in clustering (neither was 
considered earlier)

Our preliminary results show significant improvement over the Vesanto & Alhoniemi algorithm. 

The figures compare Vesanto and Alhoniemi’s own clustering of the SOM weights learned from this 
‘clown’ data set that they created by defining a distribution of 2-D points in the shape of a 
clown’s eyes, nose, mouth and beard. The small pale blue dots represent the data points. The 
various color symbols (dots, crosses, open stars) indicate the location of neuron weights in the 
input space, and their cluster memberships. (In 2- or 3-dimensional data the SOM weights can 
be shown in the input space, like in this example. For higher dimensional data we have to do the 
visualization in the SOM lattice in the way we illustrated on the previous slides.) Note that on 
these figures the weight clusters are shown, not the corresponding clusters of data. However, it 
is fairly easy to see corresponding data clusters from the underlying pale blue data points.

Points to note: 
1) The two stray brown weights near the top of the Vesanto & Alhoniemi clustering (V & A from 

hereon) were clustered with the ‘left eye’ of the clown. These weights appear markedly fenced 
off in the U-matrix of the SOM in Vesanto & Alhoniemi, IEEE TNN’2000, yet – as the authors 
themselves remark – their algorithm lumps them into the brown cluster. This is the consequence 
of not considering the topology of the SOM. Our clustering captures them as singletons, each in 
its own cluster.

2) One brown and one black weight at either ends of the ‘nose’ of the clown are more correctly 
clustered into the nose by our algorithm (open green circles, overlayed on V & A’s ). 

3) Part of the beard is clustered into the ‘mouth’ (red)  by V & A. The same weights are – correctly –
clustered into the beard by our method (open blue stars overlain on V & A’s).

4) Perhaps the most important, a well defined cluster of data between the nose and the mouth, 
separated from both by only a small gap, was clustered into the nose by V & A. It is more 
correctly separated in our scheme (inset). 

The correctness of the clusters is stated on the basis of inter- and intra-cluster distances.
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Clustering of SOM weights
higher-dimensional data
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R – 1 px T –16 px

Rare clusters found!

20-class synthetic data: 
6 bands, 128 x 128 px, 
4 rare clusters (R,Q,S,T)

T –128 px

SOM

Known class labels 
overlayed on SOM

Clustering of the 
SOM weights

Credit: Kadim Taşdemir

A more challenging case: 6-dimensional data with 20 known classes (rightmost panel), in which the 
20 classes have subtle differences among them. The set includes 4  rare classes to make it more 
challenging for automatic clustering.
Lower left: The learned SOM with fence and density structure.
Middle left: The known class labels overlain on the SOM.
Middle right: The clusters found by our automatic procedure. 

Points to note: 
- The identified clusters are very similar to the distribution of the known class labels (ground truth).
- The rare clusters were found. 

Imperfections such as the difference in the distribution of yellow and orange classes are under 
current investigation.
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An important SOM feature: 
Map Magnification

Some useful properties:
α=1 maximum entropy quantization (information theoretical optimum)
α = d/(d+2)   minimum MSE distortion quantization where d is the dimension 

of the input space;      d = 1    ⇒ α = 1/3; d = 2    ⇒ α = 1/2
α < 0 enlarges response areas for  low-frequency stimuli ⇒ leads to better

detection of small clusters 
α = 2/3          for Kohonen SOM --- not optimal in either min. distortion or max. 

entropy sense 

α= 1 is inherent in the Conscience algorithm, a variant of SOM, but it cannot
produce other values of the magnification exponents

(Areal) magnification in neural maps is relationship between the pdf 
of the input data and the density of the SOM weights in input space. 

M(w) ~ P(v)α where α is the magnification exponent.
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Magnification in neural maps is an important issue. Different magnification exponents (see above on 
slide) can help different data mining purposes, such as faithful detection of the pdf of data, or finding 
rare cluster (in the unknown data). Biological analog for negative magnification: neural maps in 
brains selectively magnify regions of interest for optimum information processing. Analog for alpha 
= 1 magnification: preservation of maximum information from layer to layer.
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Magnification control
Bauer, Der and Hermann (BDH), 1996:
Modification of KSOM to allow α control

- by adaptively adjusting local learning rates, based on the 
winner node

To induce αdesired , learning rate should be

where m = (3/2)αdesired  -1,   d = “effective dimension”

But: theory supports very limited types of data …
AISRP 2005  E. Merényi, RICE

The BDH algorithm provided a principled approach to controlling the magnification in SOMs. 
However, the thoretical proofs apply only to 1-D data or to n-D data where the n dimensions are 
statistically independent (the pdf separates to the marginals). We have been conducting numerical 
studies with “forbidden data”  to scope the validity of the BDH magnification control. Expected 
benefits are largest for high-dimensional cases such as hyperspectral data.
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Numerical Evaluation of  Magnification 
Control for “Forbidden Data”

Our study area #2 (ongoing since 2003)

KSOM: α = 2/3 BDH with α, < 0

10 x 10 SOM

White fence: large difference of weights
Dark fence: similar weights

Representation 
of the 1-px rare 

class U

(Jain & Merényi, ESANN’04)
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We have been conducting numerical studies with “forbidden data” to scope the validity of the BDH 
magnification control. Expected benefits are largest for high-dimensional cases such as hyperspectral
data (Jain & Merényi, and Merényi & Jain, ESANN’04).  Negative magnification, in particular, is of 
interest because in principle it enhances the areal representation of very small clusters and thereby 
increases the chance of their discovery. Does it, however, work for data for which the theory cannot 
provide analytical support?

Left panel:
Top: Weight vectors learned by a 10 x 10 SOM using the basic Kohonen SOM (KSOM) learning. 
Only 1 PE represents the 1-pixel rare class U. 
Bottom: Clusters identified in the map. The darker the fence between two PEs, the smaller the 
difference between the corresponding weights. 

Right panel:
Top: The learned weights, using the BDH learning rule with negative magnification exponent. The 
rare class U is now represented by 10 weights! 
Bottom: Clusters identified in the SOM. 
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Merényi, Farrand, 
Tracadas, ITCC 2004

28 SOM clusters
S0184 left eye

Finding rare clusters in MPF SuperPan octant S0184

0.932 µm

0.671 µm
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Clustering of one of the octants of the SUperPan panorama image taken by the Imager for Mars 
Pathfinder in 1997. This clustering, done with alpha = 1 (maximum entropy) SOM, identified the 
rare undifferentiated mineralogical type nicknamed “black rock” by geologists. In addition, the SOM 
found two subtypes within black rock occurrences: one (O) with an absorption shortward, and one ( 
R )  with an absorption  longward of 0.95 microns. These subtypes can be interpreted as consistent
with predominantly ortho- and clynopyroxene compositions.
The pink bow  shaped feature (O) shown in the small lower rectangular inset is about 16 pixels in 
size, the triangle shaped pale green ( R ) feature (upper inset) comprises approvimately 30 pixels. 
There are not many more occurrences of O and R in this octant. The entire image is 1000 x 900 
pixels, useful image size (without the data fallout areas and the air bag is ~ 600,000 pixels. The left 
eye of the IMP has 8 spectral bands. 

In addition to clustering we produced supervised class maps of several of the SuperPan Octants 
(Farrand et al., LPSC 2005) after labeling the SOM-identified clusters. These classification maps are 
the first comprehensive spectral maps done from the SuperPan data, which turned out difficult. We 
use a hybrid ANN for supervised classification whose power is in containing an SOM as a hidden 
layer. Our earlier publications describe the approach. Slide 14 shows a sophisticated class map 
produced by such ANN.

Part of the difficulty with classification of the SuprPan panorama image is that it was stitched 
together from independently acquired “mosaics”. These mosaics were taken under varied conditions 
(instrumental, atmospheric, illumination, and perhaps others), and the differences remained in spite 
of three rounds of calibration efforts. As apparent from this cluster map, the SOM detected the subtle 
but consistent spectral differences that exist for the same cover type across mosaics. One example: 
the orange and brown clusters represent the same dust among the Martian rocks, but in the mosaic on 
the middle right (with obvious straight boundaries) the dust has a slightly different spectral signature 
than in the mosaic on the middle left. This could be used for improving the calibration.
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Detection of rare clusters with negative 
magnification

Data: Imager for Mars Pathfinder, octant S0184, left eye

α = 1 (conscience SOM)

BDH, α < 0 α = 1 α < 0

Detail of SOM
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Detail of
clustered image

Mean spectral signatures of selected clusters

Merényi, Jain, Farrand, WSEAS Trans, 2004

This slide shows the effect of negative magnification for finding rare clusters in the same SuperPan 
octant as on the previous slide. Clearly, areal magnification occurred in the BDH SOM 
compared to Conscience SOM.

α Top two images: 
alpha = 1 case (maximum entropy quantization): The rare classes, pink (O) and light green, ( R), are 

represented by 3 and 1 neurons, respectively.
2. Bottom two images:
alpha < 0 case (negative magnification): The pink and white classes (O and O1) (7 neurons) together  

contain the former pink (O) class, the light green and blue (R and R1) together correspond to the 
former R class. Here, only the rare classes are shown on the spatial image, for clarity. 

Subclusters were brought out within the tiny original O and R clusters! The spectral shapes (averages 
of the clusters, on the right panel of graphs) show that the substructure is justified.

White and blue colors are “recycled” for the BDH alpha < 0 case, they mean different spetcral 
clusters than in the Conscience SOM.
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Clay Mineralogy Study

HNI 5/5/04 E. Merényi, RICE

Study site: Canyon Lands, Utah
Data: AVIRIS 194-band, 624x512 
px images 
Goal: Detailed mapping of clay 
species in hill slopes, for landslide 
hazard maps

Credit: Mike Mendenhall

28 SOM-identified classes

Fault Lines

Canyon wall 
layering

Classification with SOM-hybrid ANN

After labeling SOM-identified 
clusters, precise supervised 
classification can be done. 

Collaboration with Vic Baker and
Larry Rudd, U Arizona, NASA ESE
SE & NH  grant project

An example of detailed and precise supervised classification with SOM-hybrid ANN. The approach 
has been described in several earlier publications (e.g., Howell et al., JGR, 1994, Merényi et al.,
Icarus, 1997).
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Relevance Learning
Our study area #3 (new, 2004)

- Based on Generalized Relevance Learning Vector Quantization  (Hammer & Villmann ’02)
- Learned metric indicates relative importance of data dimensions ⇒ feature extraction

- Simultaneous optimization of classification & feature extraction
- Reduce computational complexity for near-real-time system

GRLVQ
• 97% classification accuracy on test data

using Dimension 4 only
• Same if using all dimensions

Relevance-vs-time
IRIS 4-dimensional data

Dimension 1

Dimension 2

Dimension 3

Dimension 4

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 7500

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
e
l
e
v
a
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c
e

Iterations: 1-Tick=75 Iterations

But: Results are unstable for high dimensional data…  ⇒ our research
Credit: Mike Mendenhall
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PCA
λ = (0.2372, 0.0274, 0.0120, 0.0018)

• 93% classification accuracy using PC1 
• 94% with PC1, PC2, PC3 together

- Very different from PCA or wavelets

Relevance Learning 
A) What -- Optimally identify the set of data components (features) needed to distinguish between 
known classes
B) Why -- Identify transform coefficients necessary for data compression

Remove superfluous data to maintain / increase classification performance
Reduce computational complexity for near-real-time systems

C) Approach -- Based on Generalized Relevance Learning Vector Quantization (GRLVQ) –
Hammer & Villmann ’02

Cast GRLVQ in a minimum classification error framework
Apply GRLVQ to transform-based coding of hyperspectral data

This approach is very different from PCA or wavelets (for example), with which there has not been 
very much success in terms of preserving the discriminating information for classification. 
The strength of GRLVQ over Principal Components Analysis, as we can assess from preliminary 
analyses, is illustrated above. While (for this relatively simple data set) GRLVQ singled out 
dimension 4 as 100% relevant and the other dimensions were evaluated as having 0 relevance, PCA 
distributes relevance a little differently in the transformed data. Yet, using the first three Principal 
Components together yields only 94% classification accuracy on test data, while classification using 
only the single dimension designated by GRLVQ produces 97% accuracy. 97% is about the best 
accuracy achievable for this data set because (as is known) it contains some mixed species.

Problem: the original Hammer & Villmann algorithm yields unstable results with hyperspectral data . 
We currently investigate stabilizing modifications by recasting the relevance framework from LVQ 
2.1 to LVQ3 emphasize in-class interactions.
Results shown here are preliminary. Our present experiences are limited to a few data sets only.
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Core development User interface Documentation

Design & access
control scripts

Version control
(source, library,
release, install)

Development
libraries

remap

specter

vecplot

anncfg cut_channels

normalize

ras2viffclstat

grlvq

gsomann-SOMbdh

ann-SOMsonsc
ANN / SOM

mdist

mlh

HyperEye GUI, visualization, plugins, 
data organization

Khoros data storage & manipulation

NeuralWare network handling

Trolltech QT multi-platform interface

Data sets

User history

Analysis modules

Specifications, reports, 
logs

Application developer’s
interface

User guides

man pdf html

HyperEye

Web demo / doc

User’s developmentinterface

Our software

Overview of the HyperEye system, our software environment for data analysis, algorithm research / 
design, and data organization.

The color coding of the large background boxes indicates major functional groups.
• Light pink = software design carpet including: source code control; XML meta data 

processing; history recording editor; underlying technology to wrap third-party libraries and 
implement our group’s logic (for versioning, meta data, etc.); underlying technology to 
enable platform independence;

• Dark pink within light pink points out the development environment for users (as opposed 
to Application developer’s environment on the right in light green): It greatly facilitates 
easy development of algorithms (new analysis modules) by researchers. This includes the 
development of new plugins (graphics, algorithm) to existing modules, for rapid prototyping 
of new subfunctionalities for larger modules.

• Dark green = collection of analysis modules. Color coding of analysis modules refers to 
their functional grouping.  For example, light blue boxes are neural network related 
algorithms. Violet indicates SOM based neural modules; medium blue shows classification 
algorithms (neural or non-neural); grey codes preprocessing; yellow is 
graphics/visualization; orange is post-processing / evaluation of  analysis results. Hot pink is 
cluster extraction (from a learned SOM).

• Light green = data and neural network organization: This is what the user interacts with: 
versioning of classification iterations, processing history, storage organization, 
administration (authenticate, docs, logs).
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Collection of Data 
Analysis Modules

• Spectral analysis
– Single binary image cube

• Knowledge representation
– SOM products

•Few knowledge layer types

• Collaborative research
– Simplified with modularity 
– Easy integration

•3rd-party modules XML wrapper

HyperEye - 3 facets
Current features
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Data & Neural Network
Organization

• Versioning
–Data sources & products
–Housekeeping database

• History
–Record start-state of modules
–Data analysis versioning

• Administration
–Problem tracking suite

•Bugs, features report facility
–Documentation
–Usage authorization

User’s Development 
Environment

• Development interface
–C and Fortran hooks for 

additional functions
–Templates for data handling, 

graphics presentation
–Rapid prototyping for student 

research

XML meta data integration Heterogeneous GUI libraries

Recent developments
–Relevance learning
–Adjacency matrices (SOM)
–Topology & entropy measures

Some Current Underlying
Software Design Features

This is another view of the 3-faceted nature of HyperEye (top three panels), with examples of current 
features in each facets. Here we emphasize current limitations (instead of trying to be exhaustive), in 
order to show planned development on the next slide. For example,

In Analysis Modules: 
- We currently handle single image cubes (no spatial relation is tracked between separate image 
cubes).
- The bullet under Knowledge representation of SOMs highlights a limit of the graphics, not a limit 
on analyses.
- Under Collaborative Research,  3rd-party module wrapper is through XML description to 
HyperEye describing what input file or command line format is/are needed to run the module. 

In Data & Neural Network Organization: 

-Under Administration, usage authorization is now done through unix groups and mySQL user list 
(web bugs). This will get more elaborate with cross-platform data handling.

In the User’s Development Environment:

- Present GUI libraries are rather heterogeneous, reflecting layers of development history rather than 
organization for a more production oriented design.

From the Underlying Software Design (that supports all three facets):

- We point out  the the integration of meta data is done by using XML, for a whole variety of things: 
module descriptions, meta data of source (scientific) data, history recording, etc. “Data” in this box is 
meant in a broad sense. For example, learned neural networks are viewed as data. 
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HyperEye - next year

AISRP 2005  E. Merényi, RICE

Collection of Data 
Analysis Modules

• Spectral analysis
– Incorporate data that has no 

spatial context (ascii data)
– Incorporate external training data 

(i.e., spectral library)

• Knowledge representation
– Incorporate multiple textual & 

graphical layers

Data & Neural Network
Organization

• New data handling 
capabilities

–Extensions
• Integration of auxiliary data 
integration with spectra 
(Khoros format, no data 
hiding, easy to disassemble)

–Data format expansion
• Promote collaboration (e.g., 
FITS)

User’s Development 
Environment

• Increase development 
flexibility…

…across multiple modules by 
multiple developers

–Graphical plugins
• Network probes

–Algorithm plugins
• SOM intializations
• various statistics

Automated history recording
• Record interactive user processing in each module (QSA)
• Record process through chain of modules (script edit/playback in year 2)

Technology infusion
• Conversion to QT (platform-independent user interface library)
• Collect all third-party licenses for packaging and distribution to collaborators

Additions to
Software Design

Some of the planned development for next year. Again, we emphasize planned changes within each 
of the three facets as well as in the underlying software design “carpet” rather than giving a 
comprehensive list.

In Development Environment: network probes is in reference to using Neural Ware's probes and 
instruments paradigm.  Won't happen until year 2.
QSA: QT Scripting for Applications- a “visual basic” type of scripting.
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Data Analysis for Space 
Missions, 2005

• Mars Exploration Rovers  PanCam (6 spectral bands)
– Also part of MDAP grant project (PI Bill Farrand, SSI)

• VIMS, Cassini (394 bands)
– With Bob Brown, U AZ, VIMS PI

• Spectral study of icy volatiles (Pluto) 
– Collaboration with Eliot Young, PI, AISRP project

• Earth hyperspectral studies
– Vic Baker, Larry Rudd, U AZ

• More IMP SuperPan
– Try to reconcile calibration discrepancies based on cluster properties

A summary of the data analyses planned for 2005 in support of space missions.
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